# Importing Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score
from sklearn import preprocessing
from sklearn.tree import DecisionTreeClassifier
from google.colab import files
uploaded = files.upload()
data=pd.read_csv('pima-indians-diabetes.csv')
raw = data.copy()
data.describe()
headers = ['preg', 'plas', 'pres', 'skin', 'insu', 'bmi', 'pedi', 'age', 'class']
data = pd.read_csv('pima-indians-diabetes.csv', names=headers)
data.head()
data.describe()
data=data.drop_duplicates()
feature_df=data[data.columns[0:-1]]
x=np.asarray(feature_df)
y=np.asarray(data[data.columns[-1]])
x1 = preprocessing.normalize(x, axis=0)
x_train,x_test,y_train,y_test=train_test_split(x1,y,test_size=0.2,random_state=16)
pd.DataFrame(data=x1, columns=headers[:-1]).hist()
gnb = GaussianNB()
y_pred = gnb.fit(x_train, y_train).predict(x_test)
gnb_accuracy = accuracy_score(y_test, y_pred)
gnb_f1 = f1_score(y_test, y_pred)
print("Gaussian Naive Bayes:")
print("Accuracy:", round(gnb_accuracy*100, 2))
print("F1-score:", round(gnb_f1*100, 2))
mnb = MultinomialNB()
y_pred_mnb = mnb.fit(x_train, y_train).predict(x_test)
mnb_accuracy = accuracy_score(y_test, y_pred_mnb)
mnb_f1 = f1_score(y_test, y_pred)
print("Multinomial Naive Bayes:")
print("Accuracy:", round(mnb_accuracy*100, 2))
print("F1-score:", round(mnb_f1*100, 2))
Comments
Post a Comment